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The paper performs studies on carbon thin films based on electron microscopy data and electrical measurements are 
reported. The samples were obtained by Thermionic Vacuum Arc (TVA) method. Techniques used to acquire information 
were BF-TEM (Bright Field Transmission Electron Microscopy), DF-TEM (Dark Field Transmission Electron Microscopy), 
HRTEM (High Resolution Transmission Electron Microscopy), SAED (Selected Area Electron Diffraction) and Radial 
Distribution Function (RDF).  
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1. Introduction 
 
Progress in the nanosciences during the past decade 

opened up new pathways for developing materials with 
enhanced electronic or other properties. Their potential 
applications are wide-spread, such semiconductor 
electronics, spintronics, photonic devices, sensors for 
molecular recognition in chemistry and biology to name a 
few.  

Despite the tremendous progress in recent years, 
however, substantial challenges remain to be solved before 
many of these nanotechnologies can reach their anticipated 
potential. Hereby, one needs to recognize that further 
advancement inevitably relies on the availability of 
characterization methodologies that allow for optimization 
of materials design and processing as well as for gaining a 
fundamental understanding of underlying scientific 
phenomena and concepts. As an example of such materials 
characterization challenges, we have studies issues related 
to nano-scale granular materials.  

Carbon materials are intensively studied for large 
application in many domains that include chemistry, 
engineering, medicine and not last, material science. The 
carbon nanostructures have advantage that can be very 
easily obtained with a large number of forms. We mention 
here the very well know form of carbon: graphite, 
diamond and amorphous carbon.  

Starting from graphite we can model and obtain onion 
like carbon and carbon nanotubes by means of modifying 
deposition parameters in case of CVD/PVD (Chemical 
Vapor Deposition/ Physical Vapor Deposition) method or 
by changing the laser parameters in case of pyrolysis 
method [1-10]. The structure can be a start point to 
understand physical properties and physical phenomena 
that occurs in these materials. 

2. Experimental 
 
Carbon thin films were prepared by thermionic 

vacuum arc (TVA) method. Because this system can heat 
any material at relevant temperature it is one of the most 
adequate deposition technologies for evaporate and 
condensate high melting point materials. It has been 
already reported to be a very suitable method for 
deposition of high purity carbon thin films with 
nanostructured film synthesis [11]. 

Thermionic Vacuum Arc deposition method consists 
form an externally heated cathode surrounded by a 
Wehnelt cylinder. The vapors are obtained by heating the 
material with thermo electron generated by externally 
heated filament of a circular form placed above the anode. 
The anode used was a 2mm diameter graphite rod. 

The cathode and the vacuum chamber are grounded so 
the carbon plasma has a potential against the chamber wall 
equal with the cathode potential fall. On the substrate are 
deposited, with the evaporated neutral atoms, the incident 
energetic ions. 

The cathode can be mounted in various positions 
against the anode. The highest density of plasma vapors is 
obtained above the anode. Due to the potential differences 
between the plasma potential and the walls, the ions are 
accelerated in the chamber walls. Practically the 
deposition takes part in the vapors of the anode materials, 
the deposited films containing only the ions of this 
material and therefore the energy of ions could achieve 
values up to 500eV. In this way the carbon thin film is 
bombarded during its deposition by carbon ions with 
established value of energy. 

Due to the high energy dispersed in the most volume 
plasma, the material is strongly dispersed and completely 
droplets free. The obtained thin films were very smooth 
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Table 3. Electrical measurements of carbon thin films 
obtained on silicon substrate. 

 
I( µA) U (V) 

1.000  1.1362  
2.000  1.1269  
3.000  1.1179  
4.000  1.1090  
5.000  1.0999  
6.000  1.0907  
7.000  1.0815  
8.000  1.0721  
9.000  1.0631  
10.000  1.0532  
20.000  0.9642  
30.000  0.8758  
40.000  0.8756  
40.000  0.7885  
50.000  0.7011  
60.000  0.6167  
70.000  0.5330  
80.000  0.4503  
90.000  0.3686  
100.000  0.2879  
125.000  0.0942  
150.000  -0.0836  

 
 

Table 4. Electrical measurements of carbon thin films 
obtained on glass substrate 

 
I( µA) U (V) 

0.000  1.2136  
1.000  1.2140  
2.000  1.2030  
3.000  1.1912  
4.000  1.1813 
5.000  1.1707  
6.000  1.1605  
7.000  1.1605  
8.000  1.1417  
9.000  1.1337  
10.000  1.1245  
20.000  1.0484  
30.000  0.9853  
40.000  0.9275  
50.000  0.8763  
60.000  0.8295  
70.000  0.7862  
80.000  0.8789  
90.000  0.7056  
100.000  0.6668  
125.000  0.5781  
150.000  0.4955  

 
 
 
 
 

4. Conclusions 
 
The size of crystalline regions was determined, 

electrical measurements were made and morphology was 
observed using transmission electron microscopy (TEM).  

The electron diffraction patterns were used to confirm 
the crystalline structure of carbon nanostructures. We 
found that both samples can be described using diamond 
cubic structure with lattice parameters a = 0.206 nm and           
c = 0.111 nm.  

High resolution transmission electron microscopy 
reveals interference fringes associated with (002) planes 
family. 

We have presented the results of electron transport 
studies of several representative carbon thin films. It is 
plausible that a good electrical contact is established 
between the metal pads and the ends of the nanostructures. 
At the present time, a complete understanding of the 
precise nature of contacts is still being pursued. 
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